

 # OpenAPI python generator

OpenAPI python generator, a modern way to generate clients for OpenAPI 3.0.0+ APIs

![Tests](https://github.com/MarcoMuellner/openapi-python-generator/workflows/Tests/badge.svg) ![Codecov](https://codecov.io/gh/MarcoMuellner/openapi-python-generator/branch/main/graph/badge.svg) ![PyPI](https://img.shields.io/pypi/v/openapi-python-generator.svg) ![Python Version](https://img.shields.io/pypi/pyversions/openapi-python-generator)
—

Documentation:

Source: https://github.com/MarcoMuellner/openapi-python-generator

—

OpenAPI python generator is a modern way to generate clients for OpenAPI 3.0.0+ APIs. It provides a full
Client, including pydantic models (providing type-safe data structures) and multiple supported frameworks.

The key features of the generator are:

	__Ease of use__. Provide input, output and the library, and the generator will do the rest.

	__Type safety and type hinting.__ __OpenAPI python generator__ makes heavy use of pydantic models to provide type-safe data structures.

	
	__Support for multiple rest frameworks.__ __OpenAPI python generator__ currently supports the following:
	
	[httpx](https://pypi.org/project/httpx/)

	[requests](https://pypi.org/project/requests/)

	__Async and sync code generation support__, depending on the framework. It will automatically create both for frameworks that support both.

	__Easily extendable using Jinja2 templates__. The code is designed to be easily extendable and should support even more languages and frameworks in the future.

	__Fully tested__. Every generated code is automatically tested against the OpenAPI spec and we have 100% coverage.

	__Usage as CLI or as library__.

Interested? Hop over to our Quickstart page, if you don’t want to bother reading the docs, or if you just want to try it out.
If you want to get a more in depth guide, check out our Tutorials page. If you are interested in the OpenAPI spec,
go check out our OpenAPI Specification page.

Index

 # A quick word about OpenAPI

_Note: This documentation is not intended to be a full introduction
to [OpenAPI](https://github.com/OAI/OpenAPI-Specification),
but rather a quick introduction into its workings, and how we can use it to generate Python code from an
OpenAPI 3.0.0 specification. Check their github repo and official documentation for more info._

Introduction

The OpenAPI spec is an open and standardized format for describing RESTful APIs. This is especially useful, because
it provides a machine readable description of the API (in either JSON or YAML format), which can then be used
to do all kind of cool things with it. In our case, we’ll try to automatically create a client for our API. Read
[this](https://oai.github.io/Documentation/specification.html) page on their documentation for a more in depth
description of the spec.

What we are interested in is specifically the [specifications document](https://spec.openapis.org/oas/v3.1.0), which
gives us an idea on what we can extract from the spec. At its minimum, the spec requires the following:

	The openapi field. This is the version of the spec.

	The info field. This is a dictionary containing information about the API (title, versions).

	The paths field. This is a dictionary containing the paths of the API (can be empty however).

Therefore a minimal spec would look like this:

```json
{


“openapi”: “3.1.0”,
“info”: {


“title”: “My API”,
“version”: “1.0.0”




},
“paths”: {}





}

or in YAML:

```yaml
openapi: 3.1.0
info:

title: A minimal OpenAPI document
version: 0.0.1

paths: { } # No endpoints defined
```

We’ll kepp to the json format for the rest of this documentation.

## The path dictionary

Of special interest is the paths dictionary. This dictionary contains all information necessay to describe
the given paths and operations of the API. Each path contains zero or more so called operations, which
describe the different HTTP methods that can be used on the given path. For more in depth info on
HTTP methods, see the [Modzilla web docs](https://developer.mozilla.org/de/docs/Web/HTTP/Methods). So, the structure
of any given path is as follows:

```json
{

	“/users”: {
	
	“get”: {
	…

},
“post”: {

…

},
“put”: {

…

}

},
“/teams”: {

	“get”: {
	…

},
“post”: {

…

},
“put”: {

…

}

}

}

This is already pretty neat! We get a full list of all paths, and can do with them as we please. Now lets look
at these operations a bit more in detail.

The operations

OpenAPI operations [have a ton of possible field](https://spec.openapis.org/oas/v3.1.0#operation-object). We don’t
want to get into all of them, but rather take a look at the most important ones, ‘parameters’ and ‘responses’

_Note: It makes sense to have more info on these operations than just these two fields. However, you will
very probably generate the .json from an existing API, and won’t need to bother with the other fields much.
If you have to or want to, do take a look at the documentation above_

A potential operation could look something like this:

```json
{



	“get”: {
	“summary”: “Get a user”,
“description”: “Get a user by id”,
“operationId”: “getUser”,
“parameters”: [



	{
	“name”: “id”,
“in”: “path”,
“description”: “The id of the user”,
“required”: true,
“schema”: {


“type”: “string”




}





}




],
“responses”: {



	“200”: {
	“description”: “A user”,
“content”: {



	“application/json”: {
	
	“schema”: {
	“$ref”: “#/components/schemas/User”





}





}




}





}




}





}






}

That is quite a lot of information! Lets walk through the fields step by step, starting with the parameters field.

```json
{

	“parameters”: [
	
	{
	“name”: “id”, # The name of the parameter
“in”: “path”, #The parameter is in the path or in the query string
“description”: “The id of the user”, # A description of the parameter
“required”: true, #Wether the parameter must be present in the query or not
“schema”: {

“type”: “string” #The type of the parameter

}

}

]

}

__OpenAPI python generator__ will automatically take care of these parameters in the generated code, provide
args to pass (and default values if they aren’t required), and will automatically add the parameters to where they
need to be (path or query string). Parameters can also refer to so called References, which we will cover
in the next subchapter.

Lets take a look at the responses field:

```json
{



	“200”: { # The status code of the response
	“description”: “A user”, # Description of the response
“content”: { # The content and type of content



	“application/json”: {
	
	“schema”: {
	“$ref”: “#/components/schemas/User” # A reference to a specific object in the spec





}





}




}





}






}

__OpenAPI python generator__ will take the first available 2xx response code and use it as the “good” response code.
It will also raise a HTTPException for any other response code taken from the API. The $ref field is interesting,
it doesn’t fit the normal schema definition of types. It refers to so called Components in the spec, which we
can also use to our advantage, by creating these components as pydantic models.

## Components

Last but not least, an OpenAPI spec can contain so called Components. These are dictionaries that contain
definitions to types that can be returned or input via body parameters to queries. For example, a user object
would look like this:

```json
{

	“components”: {
	
	“schemas”: {
	
	“User”: {
	“type”: “object”,
“properties”: {

	“id”: {
	“type”: “string”

},
“name”: {

“type”: “string”

}

}

}

}

}

}

If you feel comfortable with the above, we can now move on to the actual generation of the code, and take a look
at the generator.

 # Quick start

Make sure you have the latest version of openapi-python-generator installed.

	<div id=”termynal” data-termynal data-termynal class=”use-termynal” data-ty-typeDelay=”40” data-ty-lineDelay=”700”>
	pip install openapi-python-generator –upgrade

Successfully installed openapi-python-generator

</div>

—

To call the generator, simply pass the OpenAPI spec (as a link or to a file), and an output folder. Optionally
you can also pass the library you would like to use.

	<div id=”termynal” data-termynal data-termynal class=”use-termynal” data-ty-typeDelay=”40” data-ty-lineDelay=”700”>
	openapi-python-generator https://raw.githubusercontent.com/MarcoMuellner/openapi-python-generator/main/tests/test_data/test_api.json testclient
Generating data from https://raw.githubusercontent.com/MarcoMuellner/openapi-python-generator/main/tests/test_data/test_api.json

</div>

This will generate a folder called testclient, with the following structure (using the file above):

```
- models



	__init__.py


	HTTPValidationError.py


	RootResponse.py


	Team.py


	User.py


	ValidationError.py


	EnumComponent.py








	
	services
	
	__init__.py


	async_general_service.py


	general_service.py










	__init__.py


	api_config.py




```

To use it, simply import the module and call the functions:

```py
from testclient import root__get

root__get()  # Returns a RootResponse object
```

If you’d like more info, do check out our [Tutorial](tutorial/index.md) or the [API Reference](references/index.md).

 # Acknowledgements

There are a couple of awesome libraries, without which this wouldn’t work. In no particular order:

	[pydantic](https://pypi.org/project/pydantic/) - A Python data model library that provides a simple, clean, and efficient data model for your application.

	[Jinja2](https://pypi.org/project/Jinja2/) - A template engine for Python.

	[httpx](https://pypi.org/project/httpx/) - A Python HTTP client library for asyncio/sync with the familiar syntax of requests.

Also do check out the article series [Hypermodern python](https://medium.com/@cjolowicz/hypermodern-python-d44485d9d769),
which cookiecutter project was used to generate this project. Also special thanks to [fastapi](https://fastapi.tiangolo.com/)
for showing us on how to properly write documentation.

 # API Reference

CLI Interface

`console
$ openapi-python-generator <spec> <output_folder> [library]
`
Arguments:
```console
<spec>


The OpenAPI spec to use. Either a URL or a local file.





	<output_folder>
	The folder to output the generated code to.





```

Options:
`console
--library The library to use. Defaults to `httpx`.
--env-token-name The name of the environment variable to use for the API key. Defaults to `access_token`.
--use-orjson Use the `orjson` library for serialization. Defaults to `false`.
-h, --help Show this help message and exit.
`

 # Usage as a module

__Coming soon__

 # Advanced usage

__coming soon__

 # Authentication

__coming soon__

 # Getting started

Pre requisits

As already denoted in [the quick start section](../quick_start.md), the first thing
you need to do is to actually install the generator. You can do so via pip
or any other package manager.

	<div id=”termynal” data-termynal data-termynal class=”use-termynal” data-ty-typeDelay=”40” data-ty-lineDelay=”700”>
	pip install openapi-python-generator –upgrade

Successfully installed openapi-python-generator

</div>

For this tutorial, we’ll use the test_api.json file contained within the test
suite of the generator. It has the following structure:

<details>
<summary>test_api.json</summary>

```json
{


“openapi”: “3.0.2”,
“info”: {


“title”: “openapi-python-generator test api”,
“description”: “API Schema for openapi-python-generator test api”,
“version”: “1.0.0”,
“x-logo”: {


“url”: “https://fastapi.tiangolo.com/img/logo-margin/logo-teal.png”




}




},
“paths”: {



	“/”: {
	
	“get”: {
	
	“tags”: [
	“general”





],
“summary”: “Root”,
“operationId”: “root__get”,
“responses”: {



	“200”: {
	“description”: “Successful Response”,
“content”: {



	“application/json”: {
	
	“schema”: {
	“$ref”: “#/components/schemas/RootResponse”





}





}




}





}




}





}





},
“/users”: {



	“get”: {
	
	“tags”: [
	“general”





],
“summary”: “Get Users”,
“operationId”: “get_users_users_get”,
“responses”: {



	“200”: {
	“description”: “Successful Response”,
“content”: {



	“application/json”: {
	
	“schema”: {
	“title”: “Response Get Users Users Get”,
“type”: “array”,
“items”: {


“$ref”: “#/components/schemas/User”




}





}





}




}





}




}





},
“post”: {



	“tags”: [
	“general”





],
“summary”: “Create User”,
“operationId”: “create_user_users_post”,
“requestBody”: {



	“content”: {
	
	“application/json”: {
	
	“schema”: {
	“$ref”: “#/components/schemas/User”





}





}





},
“required”: true




},
“responses”: {



	“201”: {
	“description”: “Successful Response”,
“content”: {



	“application/json”: {
	
	“schema”: {
	“$ref”: “#/components/schemas/User”





}





}




}





},
“422”: {


“description”: “Validation Error”,
“content”: {



	“application/json”: {
	
	“schema”: {
	“$ref”: “#/components/schemas/HTTPValidationError”





}





}




}




}




}




}




},
“/users/{user_id}”: {



	“get”: {
	
	“tags”: [
	“general”





],
“summary”: “Get User”,
“operationId”: “get_user_users__user_id__get”,
“parameters”: [



	{
	“required”: true,
“schema”: {


“title”: “User Id”,
“type”: “integer”




},
“name”: “user_id”,
“in”: “path”





}




],
“responses”: {



	“200”: {
	“description”: “Successful Response”,
“content”: {



	“application/json”: {
	
	“schema”: {
	“$ref”: “#/components/schemas/User”





}





}




}





},
“422”: {


“description”: “Validation Error”,
“content”: {



	“application/json”: {
	
	“schema”: {
	“$ref”: “#/components/schemas/HTTPValidationError”





}





}




}




}




}





},
“delete”: {



	“tags”: [
	“general”





],
“summary”: “Delete User”,
“operationId”: “delete_user_users__user_id__delete”,
“parameters”: [



	{
	“required”: true,
“schema”: {


“title”: “User Id”,
“type”: “integer”




},
“name”: “user_id”,
“in”: “path”





}




],
“responses”: {



	“204”: {
	“description”: “Successful Response”





},
“422”: {


“description”: “Validation Error”,
“content”: {



	“application/json”: {
	
	“schema”: {
	“$ref”: “#/components/schemas/HTTPValidationError”





}





}




}




}




}




},
“patch”: {



	“tags”: [
	“general”





],
“summary”: “Update User”,
“operationId”: “update_user_users__user_id__patch”,
“parameters”: [



	{
	“required”: true,
“schema”: {


“title”: “User Id”,
“type”: “integer”




},
“name”: “user_id”,
“in”: “path”





}




],
“requestBody”: {



	“content”: {
	
	“application/json”: {
	
	“schema”: {
	“$ref”: “#/components/schemas/User”





}





}





},
“required”: true




},
“responses”: {



	“200”: {
	“description”: “Successful Response”,
“content”: {



	“application/json”: {
	
	“schema”: {
	“$ref”: “#/components/schemas/User”





}





}




}





},
“422”: {


“description”: “Validation Error”,
“content”: {



	“application/json”: {
	
	“schema”: {
	“$ref”: “#/components/schemas/HTTPValidationError”





}





}




}




}




}




}




},
“/teams”: {



	“get”: {
	
	“tags”: [
	“general”





],
“summary”: “Get Teams”,
“operationId”: “get_teams_teams_get”,
“responses”: {



	“200”: {
	“description”: “Successful Response”,
“content”: {



	“application/json”: {
	
	“schema”: {
	“title”: “Response Get Teams Teams Get”,
“type”: “array”,
“items”: {


“$ref”: “#/components/schemas/Team”




}





}





}




}





}




}





},
“post”: {



	“tags”: [
	“general”





],
“summary”: “Create Team”,
“operationId”: “create_team_teams_post”,
“requestBody”: {



	“content”: {
	
	“application/json”: {
	
	“schema”: {
	“$ref”: “#/components/schemas/Team”





}





}





},
“required”: true




},
“responses”: {



	“201”: {
	“description”: “Successful Response”,
“content”: {



	“application/json”: {
	
	“schema”: {
	“$ref”: “#/components/schemas/Team”





}





}




}





},
“422”: {


“description”: “Validation Error”,
“content”: {



	“application/json”: {
	
	“schema”: {
	“$ref”: “#/components/schemas/HTTPValidationError”





}





}




}




}




}




}




},
“/teams/{team_id}”: {



	“get”: {
	
	“tags”: [
	“general”





],
“summary”: “Get Team”,
“operationId”: “get_team_teams__team_id__get”,
“parameters”: [



	{
	“required”: true,
“schema”: {


“title”: “Team Id”,
“type”: “integer”




},
“name”: “team_id”,
“in”: “path”





}




],
“responses”: {



	“200”: {
	“description”: “Successful Response”,
“content”: {



	“application/json”: {
	
	“schema”: {
	“$ref”: “#/components/schemas/Team”





}





}




}





},
“422”: {


“description”: “Validation Error”,
“content”: {



	“application/json”: {
	
	“schema”: {
	“$ref”: “#/components/schemas/HTTPValidationError”





}





}




}




}




}





},
“delete”: {



	“tags”: [
	“general”





],
“summary”: “Delete Team”,
“operationId”: “delete_team_teams__team_id__delete”,
“parameters”: [



	{
	“required”: true,
“schema”: {


“title”: “Team Id”,
“type”: “integer”




},
“name”: “team_id”,
“in”: “path”





}




],
“responses”: {



	“204”: {
	“description”: “Successful Response”





},
“422”: {


“description”: “Validation Error”,
“content”: {



	“application/json”: {
	
	“schema”: {
	“$ref”: “#/components/schemas/HTTPValidationError”





}





}




}




}




}




},
“patch”: {



	“tags”: [
	“general”





],
“summary”: “Update Team”,
“operationId”: “update_team_teams__team_id__patch”,
“parameters”: [



	{
	“required”: true,
“schema”: {


“title”: “Team Id”,
“type”: “integer”




},
“name”: “team_id”,
“in”: “path”





}




],
“requestBody”: {



	“content”: {
	
	“application/json”: {
	
	“schema”: {
	“$ref”: “#/components/schemas/Team”





}





}





},
“required”: true




},
“responses”: {



	“200”: {
	“description”: “Successful Response”,
“content”: {



	“application/json”: {
	
	“schema”: {
	“$ref”: “#/components/schemas/Team”





}





}




}





},
“422”: {


“description”: “Validation Error”,
“content”: {



	“application/json”: {
	
	“schema”: {
	“$ref”: “#/components/schemas/HTTPValidationError”





}





}




}




}




}




}




}




},
“components”: {



	“schemas”: {
	
	“HTTPValidationError”: {
	“title”: “HTTPValidationError”,
“type”: “object”,
“properties”: {



	“detail”: {
	“title”: “Detail”,
“type”: “array”,
“items”: {


“$ref”: “#/components/schemas/ValidationError”




}





}




}





},
“RootResponse”: {


“title”: “RootResponse”,
“required”: [


“message”




],
“type”: “object”,
“properties”: {



	“message”: {
	“title”: “Message”,
“type”: “string”





}




}




},
“Team”: {


“title”: “Team”,
“required”: [


“id”,
“name”,
“description”




],
“type”: “object”,
“properties”: {



	“id”: {
	“title”: “Id”,
“type”: “integer”





},
“name”: {


“title”: “Name”,
“type”: “string”




},
“description”: {


“title”: “Description”,
“type”: “string”




},
“is_active”: {


“title”: “Is Active”,
“type”: “boolean”




},
“created_at”: {


“title”: “Created At”,
“type”: “string”,
“format”: “date-time”




},
“updated_at”: {


“title”: “Updated At”,
“type”: “string”,
“format”: “date-time”




},
“users”: {


“title”: “Users”,
“type”: “array”,
“items”: {


“$ref”: “#/components/schemas/User”




}




},
“captain”: {


“$ref”: “#/components/schemas/User”




}




}




},
“User”: {


“title”: “User”,
“required”: [


“id”,
“username”,
“email”,
“password”




],
“type”: “object”,
“properties”: {



	“id”: {
	“title”: “Id”,
“type”: “integer”





},
“username”: {


“title”: “Username”,
“type”: “string”




},
“email”: {


“title”: “Email”,
“type”: “string”




},
“password”: {


“title”: “Password”,
“type”: “string”




},
“is_active”: {


“title”: “Is Active”,
“type”: “boolean”




},
“created_at”: {


“title”: “Created At”,
“type”: “string”,
“format”: “date-time”




}




}




},
“EnumComponent”: {


“title”: “EnumComponent”,
“enum”: [


“EnumValue1”,
“EnumValue2”,
“EnumValue3”




],
“description”: “An enumeration.”




},
“ValidationError”: {


“title”: “ValidationError”,
“required”: [


“loc”,
“msg”,
“type”




],
“type”: “object”,
“properties”: {



	“loc”: {
	“title”: “Location”,
“type”: “array”,
“items”: {



	“anyOf”: [
	
	{
	“type”: “string”





},
{


“type”: “integer”




}





]




}





},
“msg”: {


“title”: “Message”,
“type”: “string”




},
“type”: {


“title”: “Error Type”,
“type”: “string”




}




}




}





}




},
“servers”: [



	{
	“url”: “http://localhost:8080”





}




]





}

</details>

!!! tip “OpenAPI specification”


Take a look at our short introduction to the
[OpenAPI specification](../openapi-definition.md) if you need to look up
what the specific nodes mean, or if you just need a refresher or some
links for further information.




Lets run the generator on this file:


	<div id=”termynal” data-termynal data-termynal class=”use-termynal” data-ty-typeDelay=”40” data-ty-lineDelay=”700”>
	<span data-ty=”input”>openapi-python-generator https://raw.githubusercontent.com/MarcoMuellner/openapi-python-generator/main/tests/test_data/test_api.json testclient</span>
<span data-ty>Generating data from https://raw.githubusercontent.com/MarcoMuellner/openapi-python-generator/main/tests/test_data/test_api.json</span>





</div>

This will result in the folder structure as denoted in the
[quick start](../quick_start.md) section. Lets take a deep dive on what
the generator created for us, starting with the models.

## The models module

The models module contains the generated models from the Components section
of the OpenAPI definition, each in their individual file. There are two
different types of models, currently supported by the generator:


	__pydantic models__


	__enums__




Both are valid structures in the OpenApi specification. The enumeration models
will always create mixin string classes, as for example in the EnumContent.py
file:

!!! note “EnumContent.py”


```py
from enum import Enum

class EnumComponent(str, Enum):

enumvalue1 = “EnumValue1”
enumvalue2 = “EnumValue2”
enumvalue3 = “EnumValue3”


```




This is pretty straight forward, but what about the pydantic models? Lets
take a look at the User.py and the Team.py files:

=== “User.py”


``` py
from typing import *

from pydantic import BaseModel, Field

class User(BaseModel):
“””
User model

“””

id: int = Field(alias=”id”)

username: str = Field(alias=”username”)

email: str = Field(alias=”email”)

password: str = Field(alias=”password”)

is_active: Optional[bool] = Field(alias=”is_active”, default=None)

created_at: Optional[str] = Field(alias=”created_at”, default=None)

```




=== “Team.py”


``` py
from typing import *

from pydantic import BaseModel, Field

from .User import User

class Team(BaseModel):
“””
Team model

“””

id: int = Field(alias=”id”)

name: str = Field(alias=”name”)

description: str = Field(alias=”description”)

is_active: Optional[bool] = Field(alias=”is_active”, default=None)

created_at: Optional[str] = Field(alias=”created_at”, default=None)

updated_at: Optional[str] = Field(alias=”updated_at”, default=None)

users: Optional[List[User]] = Field(alias=”users”, default=None)

captain: Optional[User] = Field(alias=”captain”, default=None)

```




If you are not familiar with the pydantic library, you can also check out
the [pydantic documentation](https://pydantic-docs.helpmanual.io/). Pydantic
is extremely useful, as it provides light weight in built validation and
type checking. We therefore can very easily represent the models and
their various properties (and requirements) through the models. For example,
the created_at property is optional (nullable) in the spec, and this is
therefore reflected in the model.


	=== “test_api.json”
	```json
…
“required”: [

“id”,
“name”,
“description”

	“properties”: {
	…
“created_at”: {

“title”: “Created At”,
“type”: “string”,
“format”: “date-time”

}

	=== “Team.py”
	``` py
from typing import *

from pydantic import BaseModel

from .User import User


	class Team(BaseModel):
	…
created_at: Optional[str] = None
…





```


Hence, we can also directly use the json output from the service requests
and return these objects! (FastAPI does this too, but the other way round.)
The code also automatically converts to the proper python types, arrays and
Unions, as they are available by the OpenAPI specification. But lets take a look
at the services.

The services module

The services module is the nitty gritty part of the generator. Depending on
the library you chose in the generator, the module will contain either one
or two submodules:

	async_general_service.py containing the async general service

	general_service.py containing the synchronous general service

Lets stop for a moment and take a look at that. The generator will create
a module for each individual tag from the OpenAPI specification:

!!! note “test_api.json”


```json
…
“tags”: [



“general”




]







Therefore, if we add a second and third tag, the generator will create
the additional two - four modules.

The next thing is async support: You may want (depending on your usecase)
bot async and sync services. The generator will create both (for __httpx__),
only sync (for __requests__) or only async (for __aiohttp__) services.


	=== “async_general_service.py”
	``` py
…
async def async_root__get() -> RootResponse:

base_path = APIConfig().base_path
path = f”/”
headers = {

“Content-Type”: “application/json”,
“Accept”: “application/json”,
“Authorization”: f”Bearer { APIConfig().get_access_token() }”,

}
query_params = {}

	with httpx.AsyncClient(base_url=base_path) as client:
	
	response = await client.request(
	method=”get”,
url=path,
headers=headers,
params=query_params,

)

	if response.status_code != 200:
	raise Exception(f” failed with status code: {response.status_code}”)

return RootResponse(**response.json())

	=== “general_service.py”
	``` py
…
def root__get() -> RootResponse:


base_path = APIConfig().base_path
path = f”/”
headers = {


“Content-Type”: “application/json”,
“Accept”: “application/json”,
“Authorization”: f”Bearer { APIConfig().get_access_token() }”,




}
query_params = {}


	with httpx.Client(base_url=base_path) as client:
	
	response = client.request(
	method=”get”,
url=path,
headers=headers,
params=query_params,





)



	if response.status_code != 200:
	raise Exception(f” failed with status code: {response.status_code}”)





return RootResponse(**response.json())








While we are at the topic of looking at the individual functions, lets walk through the one above:

`py
...
def root__get() -> RootResponse:
...
`

All functions are fully annotated with the proper types, which provides the inspection of your IDE better insight
on what to provide to a given function and what to expect.

`py
...
path = f"/"
...
`

Paths are automatically created from the specification. No need to worry about that.

```py
…
headers = {

“Content-Type”: “application/json”,
“Accept”: “application/json”,
“Authorization”: f”Bearer { APIConfig.get_access_token() }”,

}

query_params = {}
…
```

Authorization token is always passed to the Rest API, you will not need to worry about differentiating between the
calls. Query params are also automatically created, with the input parameters and depending on your spec (for
this root call no params are necessary)

```py
…
if response.status_code != 200:

raise Exception(f” failed with status code: {response.status_code}”)

return RootResponse(**response.json())
…
```

The generator will automatically raise an exception if a non-good status code was returned by the API, for
whatever reason. The “good” status code is also determined by the spec - and can be defined through your API.
For a post call for example, the spec will define a 201 status code as a good status code.

Lastly the code will automatically type check and convert the response to the appropriate type (in this case
RootResponse). This is really neat, because without doing much in the code, it automatically validates that
your API truly responds the way we expect it to respond, and gives you proper typing latter on in your code -
all thanks to the magic of [pydantic](https://pydantic-docs.helpmanual.io/).




            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          <no title>
        


      


    
  

_static/minus.png





_static/plus.png





_static/file.png





